Кинетическая энергия частицы системы частиц. Закон сохранения полной механической энергии частицы. Какие основные постулаты термодинамики Вы знаете

Приращение кинетической энергии каждой частицы равно работе всех сил, действующих на частицу: ΔK i = A i . Поэтому работу A, которую совершают все силы, дей­ствующие на все частицы системы, при изменении ее состоя­ния, можно записать так: К, или

(1.6.9)

где K - суммарная кинетическая энергия системы.

Итак, приращение кинетической энергии системы равно ра­боте, которую совершают все силы, действующие на все час­тицы системы:

Заметим, что кинетическая энергия системы - величина ад­дитивная: она равна сумме кинетических энергий отдельных частей системы независимо от того, взаимодействуют они меж­ду собой или нет.

Уравнение (1.6.10) справедливо как в инерциальных, так и в неинерциальных системах отсчета. Следует только помнить, что в неинерциальных системах отсчета кроме работ сил взаи­модействия необходимо учитывать и работу сил инерции.

Теперь установим связь между кинетическими энергиями системы частиц в разных системах отсчета. Пусть в неподвижной системе отсчета кинетическая энергия инте­ресующей нас системы частиц равна К. Скорость i-ой частицы в этой системе можно представить как, , где - скорость этой ча­стицы в движущейся системе отсчета, a -скорость движущейся системы относительно неподвижной системы отсчета. Тогда кинетическая энергия системы

где - энергия в движущейся системе, т – масса всей системы частиц, - ее импульс в движущейся системе отсчета.

Если движущаяся система отсчета связана с центром масс (Ц-система), то центр масс покоится, а значит последнее слагаемое равно нулю и предыдущее выражение примет вид

где - суммарная кинетическая энергия частиц в Ц-системе, называемая собственной кинетической энергией системы частиц

Таким образом, кинетическая энергия системы частиц складывается из собственной кинетической энергии и кинетической энергии, связанной с движением систе­мы частиц как целого. Это важный вывод, и он неоднократно будет использоваться в дальнейшем (в частности, при изучении динамики твердого тела).

Из формулы (1.6.11) следует, что кинетическая энергия сис­темы, частиц минимальна в Ц-системе. В этом еще одна осо­бенность Ц-системы.

Работа консервативных сил.

Воспользовавшись формулой (1.6.2) и

графическим способом определения работы,

рассчитаем работу некоторых сил.

1.Работа, совершаемая силой тяжести

Сила тяжести направлена

вертикально вниз. Выберем ось z ,

направленную вертикально вверх и

спроецируем на нее силу .

Построим график

зависимости от z (рис.1.6.3). Работа силы тяжести

при перемещении частицы из точки с координатой в точку с координатой равна площади прямоугольника



Как видно из полученного выражения работа силы тяжести равна изменению некоторой величины, не зависящей от траектории частицы и определенной с точностью до произвольной постоянной

2.Работа силы упругости.

Проекция силы упругости на ось х, указывающую направление деформации,

12.4. Энергия релятивистской частицы

12.4.1. Энергия релятивистской частицы

Полная энергия релятивистской частицы складывается из энергии покоя релятивистской частицы и ее кинетической энергии:

E = E 0 + T ,

Эквивалентность массы и энергии (формула Эйнштейна) позволяет определить энергию покоя релятивистской частицы и ее полную энергию следующим образом:

  • энергия покоя -

E 0 = m 0 c 2 ,

где m 0 - масса покоя релятивистской частицы (масса частицы в собственной системе отсчета); c - скорость света в вакууме, c ≈ 3,0 ⋅ 10 8 м/с;

  • полная энергия -

E = mc 2 ,

где m - масса движущейся частицы (масса частицы, движущейся относительно наблюдателя с релятивистской скоростью v ); c - скорость света в вакууме, c ≈ 3,0 ⋅ 10 8 м/с.

Связь между массами m 0 (масса покоящейся частицы) и m (масса движущейся частицы) определяется выражением

Кинетическая энергия релятивистской частицы определяется разностью:

T = E − E 0 ,

где E - полная энергия движущейся частицы, E = mc 2 ; E 0 - энергия покоя указанной частицы, E 0 = m 0 c 2 ; массы m 0 и m связаны формулой

m = m 0 1 − v 2 c 2 ,

где m 0 - масса частицы в той системе отсчета, относительно которой частица покоится; m - масса частицы в той системе отсчета, относительно которой частица движется со скоростью v ; c - скорость света в вакууме, c ≈ 3,0 ⋅ 10 8 м/с.

В явном виде кинетическая энергия релятивистской частицы определяется формулой

T = m c 2 − m 0 c 2 = m 0 c 2 (1 1 − v 2 c 2 − 1) .

Пример 6. Скорость релятивистской частицы составляет 80 % от скорости света. Определить, во сколько раз полная энергия частицы больше ее кинетической энергии.

Решение . Полная энергия релятивистской частицы складывается из энергии покоя релятивистской частицы и ее кинетической энергии:

E = E 0 + T ,

где E - полная энергия движущейся частицы; E 0 - энергия покоя указанной частицы; T - ее кинетическая энергия.

Отсюда следует, что кинетическая энергия является разностью

T = E − E 0 .

Искомой величиной является отношение

E T = E E − E 0 .

Для упрощения расчетов найдем величину, обратную искомой:

T E = E − E 0 E = 1 − E 0 E ,

где E 0 = m 0 c 2 ; E = mc 2 ; m 0 - масса покоя; m - масса движущейся частицы; c - скорость света в вакууме.

Подстановка выражений для E 0 и E в отношение (T /E ) дает

T E = 1 − m 0 c 2 m c 2 = 1 − m 0 m .

Связь между массами m 0 и m определяется формулой

m = m 0 1 − v 2 c 2 ,

где v - скорость релятивистской частицы, v = 0,80c .

Выразим отсюда отношение масс:

m 0 m = 1 − v 2 c 2

и подставим его в (T /E ):

T E = 1 − 1 − v 2 c 2 .

Рассчитаем:

T E = 1 − 1 − (0,80 c) 2 c 2 = 1 − 0,6 = 0,4 .

Искомой величиной является обратное отношение

E T = 1 0,4 = 2,5 .

Полная энергия релятивистской частицы при указанной скорости превышает ее кинетическую энергию в 2,5 раза.

Работа силы по перемещению частицы идет на увеличение энергии частицы:

dA =( , ) = ( , d ) = (d , )=dE

217. Что такое энергия связи? Поясните на примере ядра атома.

Энергия связи – разность между энергией состояния, в котором составляющие части системы бесконечно удалены друг от друга и находятся в непрерывном состоянии активного покоя и полной энергией связанного состоянии системы

где – полная энергия i-го компонента в несвязной системе, а Е – полная энергия связанной системы

ПРИМЕР:

Ядра атомов – сильно связанные системы из большого числа нуклонов. Для полного расщепления ядра на составные части и удаление их на большие расстояния друг от друга необходимо затратить определенную работу А. Энергией связи называют энергию, равную работе, которую надо совершить, чтоб расщепить ядро на свободные нуклоны

Eсвязи = -А

По закону сохранения энергия связи одновременно равна энергии, которая выделится при образовании ядра из отдельных нуклонов

Что такое макроскопическое тело, термодинамическая система?

Макроскопическое тело – большое тело, состоящее из множества молекул.

Термодинамическая система – совокупность макроскопических тел, которые могут взаимодействовать между собой и другими телами (внешней средой) – обмениваться с ними энергией и веществом.

Почему к системам, состоящим из большого числа частиц неприменим динамический метод описания?

Применить динамический метод (записать уравнения движения и начальные условия для всех атомов и молекул и вычистить положение всех частиц в каждый момент времени) невозможно, т.к. для изучения системы, состоящей из большого числа атомов и молекул, информация должна иметь обобщенный характер и относиться не к отдельным частицам, а ко всей совокупности.

Что такое термодинамический метод исследования термодинамической системы?

Метод исследования систем из большого числа частиц, оперирующий величинами, характеризующими систему в целом (p, V, T) при различных превращениях энергии, происходящих в системе, не учитывая внутреннего строения изучаемых тел и характера отдельных частиц.

Что такое статистический метод исследования термодинамической системы?

Метод исследования систем из большого числа частиц, оперирующий закономерностями и средними значениями физических величин, характеризующих всю систему

Какие основные постулаты термодинамики Вы знаете?

0: Существование и транзитивность теплового равновесия:



А и С в равновесии др с др, В – термометр

Состояние равновесия термометра детектируется по термометрическим параметрам.

1: Теплота, полученная термодинамической системой равна сумме работы системы над окр. средой и изменению внутренней энергии.

Q = A +

2: Современная формулировка: в замкнутой системе изменение энтропии не убывает (S ≥ 0)

Мы показали, что работа по перемещению частицы из положения 1 в положение 2 может быть выражена через приращение кинетической энергии:

В общем случае на частицу могут действовать как потенциальные, так и непотенциальные силы. Таким образом, результирующая сила, действующая на частицу:

.

Работа всех этих сил идет на приращение кинетической энергии частиц:

.

Но, с другой стороны, работа потенциальных сил равна убыли потенциальной энергии частиц:

следовательно,

Величину называют полной механической энергией частицы . Обозначим ее через Е .

Таким образом, работа непотенциальных сил идет на приращение полной механической энергии частицы.

Приращение полной механической энергии частицы в стационарном поле потенциальных сил при перемещении ее из точки 1 в точку 2 можно записать в виде:

.

Если > 0, то полная механическая энергия частицы возрастает, а если < 0, то убывает. Следовательно, полная механическая энергия частицы может измениться под действием только непотенциальных сил. Отсюда непосредственно вытекает закон сохранения механической энергии одной частицы. Если непотенциальные силы отсутствуют, то полная механическая энергия частицы в стационарном поле потенциальных сил остается постоянной.

В реальных процессах, где действуют силы сопротивления, наблюдается отклонение от закона сохранения механической энергии. Например, при падении тела на Землю сначала кинетическая энергия тела возрастает, поскольку увеличивается скорость. Возрастает и сила сопротивления, которая увеличивается с возрастанием скорости. Со временем она будет компенсировать силу тяжести, и в дальнейшем при уменьшении потенциальной энергии относительно Земли кинетическая энергия не возрастает. Работа сил сопротивления приводит к изменению температуры тела. Нагревание тел при действии трения легко обнаружить, потерев ладони друг о друга.